Comparison of Topological Indices Based on Iterated ‘Sum’ versus ‘Product’ Operations

Authors

  • A. BALABAN Texas A&M University at Galveston, USA
  • P. KHADIKAR Khatipura, Indore India
  • S. AZIZ Institute of Engineering and Technology, India
Abstract:

The Padmakar-Ivan (PI) index is a first-generation topological index (TI) based on sums over all edges between numbers of edges closer to one endpoint and numbers of edges closer to the other endpoint. Edges at equal distances from the two endpoints are ignored. An analogous definition is valid for the Wiener index W, with the difference that sums are replaced by products. A few other TIs are discussed, and comparisons are made between them. The best correlation is observed between indices G and PI; satisfactory correlations exist between W/n3 and PI/n2, where n denotes the number of vertices in the hydrogen-depleted graph.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

comparison of topological indices based on iterated ‘sum’ versus ‘product’ operations

the padmakar-ivan (pi) index is a first-generation topological index (ti) based on sums overall edges between numbers of edges closer to one endpoint and numbers of edges closer to theother endpoint. edges at equal distances from the two endpoints are ignored. an analogousdefinition is valid for the wiener index w, with the difference that sums are replaced byproducts. a few other tis are discu...

full text

Distance-based topological indices of tensor product of graphs

Let G and H be connected graphs. The tensor product G + H is a graph with vertex set V(G+H) = V (G) X V(H) and edge set E(G + H) ={(a , b)(x , y)| ax ∈ E(G) & by ∈ E(H)}. The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w adjacent to both of them. In this article the tensor product of G + H under some distancebased topological indices are investiga...

full text

On the bounds of degree-based topological indices of the Cartesian product of F-sum of connected graphs

Topological indices are the mathematical tools that correlate the chemical structure with various physical properties, chemical reactivity or biological activity numerically. A topological index is a function having a set of graphs as its domain and a set of real numbers as its range. In QSAR/QSPR study, a prediction about the bioactivity of chemical compounds is made on the basis of physico-ch...

full text

Distance-Based Topological Indices of Tensor Product of Graphs

Let G and H be connected graphs. The tensor product G + H is a graph with vertex set V(G+H) = V (G)  V(H) and edge set E(G + H) ={(a , b)(x , y)| ax ∈ E(G) & by ∈ E(H)}. The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w adjacent to both of them. In this article the tensor product of G + H under some distancebased topological indices are investiga...

full text

Comparison Between Two Eccentricity-based Topological Indices of Graphs

For a connected graph G, the eccentric connectivity index (ECI) and the first Zagreb eccentricity index of G are defined as ( ) ( ) deg ( ) ( ) i c G i G i v V G ξ G v ε v   and ( 2 1 ) ( ) ( ) i G i v G V E G ε v   , respectively, where deg ( ) G i v is the degree of i v in G and ( ) G i ε v denotes the eccentricity of vertex i v in G. In this paper we compare the eccentric connectivity ...

full text

M-polynomial and degree-based topological indices

Let $G$ be a graph and let $m_{ij}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The {em $M$-polynomial} of $G$ is introduced with $displaystyle{M(G;x,y) = sum_{ile j} m_{ij}(G)x^iy^j}$. It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue Issue 1 (Special Issue on the Role of PI Index in Nanotechnology)

pages  43- 67

publication date 2010-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023